Kebanyakan pelajar mengatakan materi Trigonometri adalah materi yang sangat sulit dipahami bahkan sbagian kecil orang menganggap trigonometri jauh dari applikasi kehidupan sehari-hari. Sebanrnya trigonometri itu mudah jika kita mau mempelajarinya (termasuk saya yang dulunya kesulitan belajar trigonometri, bukan berarti sekarang saya sudah sangat mahir menjawab soal2 trigonometri lho .heheh...)
untuk pengapplikasiannya dalam kehidupan sehari-harinya sebenarnya cukup banyak tanpa kita sadari seperti :
*teknik kepramukaan. Misalnya bagaimana cara mengukur lebar sungai Bengawan Solo,tanpa harus menyebrangi,bagaimana cara mengukur pohon tanpa harus naik,bagaimana cara mengukur tinggi menara juga tanpa harus menaikinya,dan masih banyak lagi.
*Di dunia pekerjaan.Misalnya : seorang nakoda yang ingin mengetahui letak kapal/pelabuhan saat berada di tengah samodra. Seorang pilot yang ingin mengetahui keberadaannya saat dalam penerbangan,terletak berapa jauh lagi dari tempat/lokasi yang di tuju.Seorang astronut yang ingin mengetahui letak gugusan bintang.dan sebagianya.
1. Perbandingan trigonometri sudut yang berelasi
* Sin(90-a) =cos a
* Cos(90-a) =sin a
* tan(90-a) =cot a
b) Rumus perbandingan trigonometri untuk sudut a dan (90+a)
* Sin(90+a) =cos a
* Cos(90+a) =-sin a
* tan(90+a) =-cot a
c) Rumus perbandingan trigonometri untuk sudut a dan (180-a)
* sin(180-a) =sin a
* cos(180-a) =-cos a
* tan(180-a) =-tan a
d) Rumus perbandingan trigonometri untuk sudut a dan (180+a)
* sin(180+a) =-sin a
* cos(180+a) =-cos a
* tan(180+a) =tan a
e) Rumus perbandingan trigonometri untuk sudut a dan (-a)
* Sin(-a) =-sin a
* cos(-a) =cos a
* tan(-a) =-tan a
f) Rumus perbandingan trigonometri a dan (a+k.360)
sudut a dengan (a+k.360) disebut sudut-sudut koterminal yaitu dan sudut yang selisihnya sama dengan (k.360). k adalah bilangan bulat.
* sin(a + k.360)=sin a
* sin(a + k.360)=cos a
* tan(a + k.360)=tan a
2. Kuadran Perbandingan Trigonometri
* Kuadran I (0-90)
Nilai sinus, cosinus, tangen adalah positif (Semua Positif)
* Kuadran II (90-180)
Nilai sinus adalah positif, Nilai cosinus dan tangen adalah negatif (Sin positif, yang lain negatif)
* Kuadran III (180-270)
Nilai tangen adalah positif sedangkan, Nilai sinus dan cosinus adalah negatif
(tangen positif, yang lain negatif)
* Kuadran IV (270-360)
Nilai cosinus adalah positif sedangkan Nilai tangen dan sinus adalah negatif
(cosinus positif, yang lain negatif)
3) Identitas Dasar Trigonometri
a) Identitas trigonometri yang berupa kebalikan
* cosec a= 1/sina
* sec a = 1/cosa
* cot a = 1/tana
b) Identitas trigonometri yang berupa perbandingan
* tan a = sina/cosa
atau
* cot a = cosa/sina
c) Identitas Trigonometri dari hubungan teorema phytagoras
* sin"a + cos"a =1
* 1 + tan"a =sec"a
* 1 + cot"a =cosec"a
(Keterangan " dibaca kuadrat)
4. Rasio Trigonometri untuk jumlah dan selisih
a) sin(a+b)=sina.cosb+cosa.sinb
b) sin(a-b)=sina.cosb-cosa.sinb
c) cos(a+b)=cosa.cosb-sina.sinb
d) cos(a-b)=cosa.cosb+sina.sinb
e) tan(a+b)=(tana+tanb)/(1-tana.tanb)
f) tan(a-b)=(tana-tanb)/(1+tana.tanb)
g) cot(a+b)=(cota.cotb-1)/(cot a+cot b)
h) cot(a-b)=(cota.cotb+1)/(cota+cotb)
i) sin(a+b).sin(a-b)=sin"a-sin"b=cos"b-cos"a
j) cos(a+b).cos(a-b)=cos"a-sin"b=cos"b-sin"a
j) sin(2a) =2.sina.cosa =(2.tan a)/(1+tan"a)
k) cos(2a)= 2.cos"a-1=(1-tan"a)/(1+tan"a)
l) tan(2a)= 2.tana/(1-tan"a)
m) tan(a/2)= (1-cos a)/sina
n) cot(a/2) =(1+cos a)/sina
o) tan"(a/2) =(1-cos a)/(1+cos a)
p) cot"(a/2) = (1+cos a)/(1 -cos a)
(keterangan : " dibaca kuadrat)
4. Jumlah dan Selisih menjadi Hasil
a) sin a + sin b=2.sin((a+b)/2).cos((a-b)/2)
b) sin a- sin b=2.cos((a+b)/2).sin((a-b)/2)
c) cos a+cos b=2.cos((a+b)/2).cos((a-b)/2)
d) cosa-cos b=-2.sin((a+b)/2).sin(a-b)/2)
e) tan a+tan b=sin(a+b)/(cosa.cosb)
f) tan a-tan b=sin(a-b)/(cosa.cosb)
g) cota+cotb= sin(a+b)/(sina.sinb)
h) cota-cotb =sin(b-a)/(sina.sinb)
5. Hasil kedalam jumlah dan selisih
a) 2.sina.cosb=sin(a+b) +sin(a-b)
b) 2.cosa.sinb=sin(a+b)-sin(a-b)
c) 2.sina.sinb=-cos(a+b)+cos(a-b)
d) 2.cosa.cosb=cos(a+b)+cos(a-b)
5. Tiga Sudut
a) sin(3a)=3.sina-4.sin"'a
b) cos(3a)=4.cos"'a-3.cosa
c) tan(3a)=(3.tana-tan"'a)/(1-3.tan"a)
d) sin a .sin(60-a).sin(60+a)=(sin3a)/4
e) cos a. cos(60-a).cos(60+a)=(cos3a)/4
(Keterangan : " dibaca kuadrat, "' dibaca pangkat 3)
6) Persamaan Trigonometri bentuk sederhana
* sin x= sin a
x1 = a + k.360
x2 =(180-a)+k.360
* cos x=cos a
x =+-a + k.360
* tan x=tan a
x=a +k.180
dengan k =bilangan bulat
(Keterangan : +- dibaca plus minus)
(keterangan : " dibaca kuadrat)
4. Jumlah dan Selisih menjadi Hasil
a) sin a + sin b=2.sin((a+b)/2).cos((a-b)/2)
b) sin a- sin b=2.cos((a+b)/2).sin((a-b)/2)
c) cos a+cos b=2.cos((a+b)/2).cos((a-b)/2)
d) cosa-cos b=-2.sin((a+b)/2).sin(a-b)/2)
e) tan a+tan b=sin(a+b)/(cosa.cosb)
f) tan a-tan b=sin(a-b)/(cosa.cosb)
g) cota+cotb= sin(a+b)/(sina.sinb)
h) cota-cotb =sin(b-a)/(sina.sinb)
5. Hasil kedalam jumlah dan selisih
a) 2.sina.cosb=sin(a+b) +sin(a-b)
b) 2.cosa.sinb=sin(a+b)-sin(a-b)
c) 2.sina.sinb=-cos(a+b)+cos(a-b)
d) 2.cosa.cosb=cos(a+b)+cos(a-b)
5. Tiga Sudut
a) sin(3a)=3.sina-4.sin"'a
b) cos(3a)=4.cos"'a-3.cosa
c) tan(3a)=(3.tana-tan"'a)/(1-3.tan"a)
d) sin a .sin(60-a).sin(60+a)=(sin3a)/4
e) cos a. cos(60-a).cos(60+a)=(cos3a)/4
(Keterangan : " dibaca kuadrat, "' dibaca pangkat 3)
6) Persamaan Trigonometri bentuk sederhana
* sin x= sin a
x1 = a + k.360
x2 =(180-a)+k.360
* cos x=cos a
x =+-a + k.360
* tan x=tan a
x=a +k.180
dengan k =bilangan bulat
(Keterangan : +- dibaca plus minus)
Komentar
Posting Komentar